A bidirectional Bluetooth authentication scheme based on game-theoretic framework

Syrine Karoui
LARODEC, ISG
41, Rue de la liberté
Le Bardo 2000 - Tunisie
karouisyrine@yahoo.fr
Tel.: +21698695233
Fax: +21671568767

Nabil El Kadhi
LERIA, EPITECH
24, Rue Pasteur
94270 Le Kremlin Bicêtre - France
nelkadhi@club-internet.fr
Tel.: +33144080128
Fax: +33144080120

Fouad Ben Abdelaziz
LARODEC, ISG - Visiting at AUB
P.O. BOX 11-0236, Riad El Solh
Beirut 1107 2020 - Lebanon
fb12@aub.edu.lb
Tel.: +9611374444
Fax: +961175021

Abstract

A new Bluetooth authentication model using some game theory concepts is presented in this paper. Bluetooth is a wireless communication protocol designed for WPAN (Wireless Personal Area Network) use. Game theory is a branch of mathematics and logic which deals with the analysis of games. An authentication between two Bluetooth devices is an unidirectional challenge-response procedure and consequently, has many vulnerabilities. We propose a bidirectional authentication scheme in which the authentication is considered as a noncooperative non-zero-sum bimatrix game. Three strategies are defined for each player, and the best-response strategies (also called Nash equilibria) for this game are computed. Using Simplex algorithm, we find only one Nash equilibrium corresponding to the case where both Bluetooth devices are authentic and trying to securely communicate together. In a Nash equilibrium, no player has an incentive to deviate from such situation.

Key words: Bluetooth security, Bluetooth authentication, game theory, Nash equilibrium.

1 Introduction

The explosive growth of electronic connectivity and wireless technologies revolutionized our society. Bluetooth is one of these technologies. It is a recently proposed standard [8] that allows for local wireless communication and facilitates the physical connection of different devices [2]. Unfortunately, this wireless environment attracted many malicious individuals. Wireless networks are exposed to many risks and hacker attacks, ranging from data manipulation and eavesdropping to viruses and... On one hand, security needs are increasingly vital.

On the other hand, many security problems have been addressed by game theory. In fact, game theory is the formal study of interactive decision processes [11] offering enhanced understanding of conflict and cooperation through mathematical models and abstractions.

2 Related work

Bluetooth networks are proliferating in our society. Unfortunately, the Bluetooth security has many weaknesses. Del Vecchio and El Kadhi [8] explain many attacks based on the Bluetooth protocol and Bluetooth software implementations.

The application of game theory to networks security has been gaining increasing interest within the past few years. For example, Syverson [14] talks about “good” nodes fighting “evil” nodes in networks and suggests using game theory for reasoning. In [3], Browne describes how game theory can be used to analyze attacks involving complicated and heterogeneous military networks. Buike [4] studies the use of games to model attackers and defenders in information warfare.

In this work, we focus on the vulnerability of the Bluetooth authentication. Since such process is unidirectional, a malicious Verifier can considerably damage its correspondent menacing the operability of that device on the one hand and, the confidentiality and the integrity of the data exchanged on the other hand. To counter this weakness, a game-theoretic framework is used to model a bidirectional authen-
tication between two Bluetooth devices. Using the Nash equilibrium concept, a secure authentication process is defined in which the authentication is successful if and only if both devices are trusted. This paper is structured as following: First, Bluetooth protocol is reviewed with a focus on its security procedures and vulnerabilities in section 3. Then, section 4 is dedicated to a background on game theory. Next, in section 5 we introduce our game-theoretic model, then some results are presented in section 6. Finally, the new bidirectional Bluetooth authentication protocol is fully described in section 7.

3 An overview of the Bluetooth security

3.1 Bluetooth technology

Bluetooth is a short-range wireless cable replacement technology. It was researched and developed by an international group called the Bluetooth Special Interest Group (SIG). It has been chosen to serve as the baseline of the IEEE (Institute of Electronic and Electrical Engineers) 802.15.1 standard for Wireless Personal Area Networks (WPANs) [6]. Bluetooth communication adopts a master-slave architecture to form restricted types of an ad-hoc network (a collection of nodes that do not need to rely on a predefined infrastructure to keep the network connected) called piconets. A Bluetooth piconet can consist of eight devices, of which one is the master and the others are slaves. Each device may take part in three piconets at most, but a device may be master in one piconet only. Several connected piconets form a so called scatternet.

One of the main practical applications of Bluetooth technology includes the ability to transfer files, audio data and other objects, such as electronic business cards, between physically separate devices such as cell phones and PDAs (Personal Digital Assistant) or laptops. In addition, the piconets formed by Bluetooth can be useful for example in a meeting, where all participants have their own Bluetooth-compatible laptops, and want to share files with each other.

3.2 Bluetooth link-level security

The Bluetooth specifications include security features at the link level. These features are based on a secret link key that is shared by a pair of devices. Bluetooth link-level security supports key management, authentication and encryption [10].

3.2.1 Security entities

In every Bluetooth device there are four entities used for managing and maintaining security at the link level, namely [7]:
- The Bluetooth device address (BD_ADDR).
- The private link key.
- The private encryption key.
- A random number (RAND).

There is also a Bluetooth Personal Identification Number (PIN) used for authentication and to generate the initialisation key before exchanging link keys [13].

3.2.2 Key management

A key management scheme is used to generate, store, and distribute keys for the purpose of encryption, authentication and authorization [13][5]. Bluetooth specifies five different types of keys: four link keys (initialisation key, a unit key, a combination key and a master key) [7][13] and one encryption key [5].

3.2.3 Authentication

Bluetooth authentication uses a challenge-response scheme, which checks whether the other party knows the link key [9]. Thus one device adopts the role of the Verifier and the other the role of the Claimant [7]. Authentication is unilateral, i.e. one device (the Claimant) authorizes itself to another device (the Verifier). If mutual authentication is required, the authentication process is repeated with the roles exchanged [15].

The authentication process is shown in figure 1:

![Figure 1: The authentication process [7].](image-url)
3.2.4 Encryption

The encryption procedure follows on from the authentication procedure. After the link key has been determined, and authentication is successful, the encryption key is generated by the Bluetooth E3 algorithm [9][12]. The stream cipher algorithm, E0, is used for Bluetooth packet encryption and consists of three elements: the keystream generator, the payload key generator and the encryption/decryption component [7].

4 Game theory

Game theory is a systematic and formal representation of the interaction among a group of rational agents (people, corporations, animals, ...). It attempts to determine mathematically and logically the actions that players should take in order to optimize their outcomes.

We distinguish two main types of game-theoretic models: the strategic (or static) games and the extensive games. The strategic form (also called normal form) is a basic model studied in noncooperative game theory. A game in strategic form is given by a set of strategies for each player, and specifies the payoff for each player resulting from each strategy profile (a combination of strategies, one for each player). Each player chooses his plan of action once and for all and all players make their decisions simultaneously at the beginning of the game. When there are only two players, the strategic form game can be represented by a matrix commonly called bimatrix. The strategic game solution is, in fact, a Nash equilibrium. Every strategic game with finite number of players, each with a finite set of actions has an equilibrium point. This Nash equilibrium is a point from which no single player wants to deviate unilaterally. By contrast, the model of an extensive game specifies the possible orders of the events. The players can make decisions during the game and they can react to other players’ decisions. Extensive games can be finite or infinite. An extensive game is a detailed description of the sequential structure corresponding to decision problems encountered by the players within strategic situations.

5 Proposed model: a game-theoretic protocol

5.1 Assumptions and notations

The bidirectional Bluetooth authentication between two devices is described by a noncooperative and non-zero-sum game for two players in a normal form representation also known as a bimatrix game. Our game is a noncooperative one because the authentication procedure is considered under the worst-case assumption. In other words, the Verifier device and the Claimant are assumed to be in conflict because each of them has to consider that the other one may be malicious. Both devices are trying to reach the same optimal situation: communicate together without any risk. Thus, what one device gains is not necessarily what the other loses. This yields to a non-zero-sum game.

We define three strategies for each player i:

$$i = \{v, c\}$$

Where v refers to the Verifier and c refers to the Claimant:

- T_i: Tell the truth and communicate with the player j.
- I_i: Tell the truth and don’t communicate with the player j.
- L_i: Lie and try to damage the player j.

where $j = \{v, c\}$ and $i \neq j$.

To allow only secure devices to communicate together, we assign some reward and cost values defining an utility function u_i for each player i. In practice, each strategy choice is assigned by some value of players’ utility functions. The set of values assigned to different strategies is determined according to statistical computations, empirical studies, or by user specified values. In this work, such values are defined according to a set of secure bidirectional Bluetooth authentication rules. Note that we suggest specifying these rules according to the authentication game context and logic. Thus:

Rule 1 A bidirectional authentication between two Bluetooth devices is secure if and only if both devices are trusted.

Rule 2 A Bluetooth device is a winner when it is trusted and is a loser otherwise.

Rule 3 A bidirectional Bluetooth authentication between two Bluetooth devices is successful if and only if it is secure and both devices cooperate together.

In addition, the following assumptions illustrate our authentication game:

Assumption 1 Each player knows that his correspondent may be a trusted device or a malicious one (note that this assumption will justify the use of cryptographic parameters in our model).
Assumption 2 Each player knows that if it cooperates, in others words if it tells the truth and communicates with its correspondent, it will win some value ω in the best case (when its correspondent is trusted) and it will lose some value ξ in the worst-case (when its correspondent is malicious).

Assumption 3 Each player knows that if it tries to damage its correspondent, in others words if it lies, it will lose some value κ when its correspondent is trusted and it will win some value ι when its correspondent is malicious.

Assumption 4 Each player knows that it had better be trusted in any case: $\omega > \iota$, $\xi < \kappa$ and ($\omega + \xi > (\iota + \kappa)$).

Assumption 5 Each player knows that if it does not cooperate, in other words if it tells the truth and does not communicate with its correspondent, it will neither win nor lose.

5.2 Costs and rewards

Next, the meanings of win and lose are defined for the Bluetooth devices. Consider each player pay-off as a function of an energy class constant G and a trust level constant Q. In fact, the Bluetooth devices need to save operating power. The device's level of trust defines the interoperability authorization. Then, the utility function is described as: $u_i = \alpha_i G - \beta_i Q$. For each player, the term $\alpha_i G$ defines the reward value whereas the term $\beta_i Q$ defines the cost value. α_i value depends only on the truthworthiness of the player i. Whereas β_i depends on the truthworthiness of both players i and j. For example, if a player i is a trusted one and faces an untrusted correspondent j, i will be rewarded for its authenticity but it should pay for the non authenticity of j. Thus, we define the following values for the coefficients α_i and β_i:

$$\alpha_i = \begin{cases} 5 & \text{if } s_i = T_i \\ 5 & \text{if } s_i = L_i \\ 0 & \text{if } s_i = I_i \end{cases}$$

$$\beta_i = \begin{cases} 0 & \text{if } s_i = T_i \text{ and } s_j = T_j \\ 6 & \text{if } s_i = T_i \text{ and } s_j = L_j \\ 0 & \text{if } s_i = T_i \text{ and } s_j = I_j \\ 8 & \text{if } s_i = L_i \text{ and } s_j = T_j \\ 1 & \text{if } s_i = L_i \text{ and } s_j = L_j \\ 0 & \text{if } s_i = L_i \text{ and } s_j = I_j \\ 0 & \text{if } s_i = I_i \text{ and } s_j = T_j \\ 0 & \text{if } s_i = I_i \text{ and } s_j = L_j \\ 0 & \text{if } s_i = I_i \text{ and } s_j = I_j \end{cases}$$

where $i = \{v, c\}$, $j = \{v, c\}$, $i \neq j$, $s_i \in S_i$ (the set of player i's strategies) and $u_i = \text{the player } i \text{ utility function.}$

5.3 The Nash equilibrium of our game

To achieve a secure bidirectional Bluetooth authentication preserving the confidentiality and the integrity of the data in transit, we use the Nash equilibrium theorem:

Theorem 1 A Nash equilibrium of a strategic-form game is a mixed-strategy profile $\sigma^* \in \Sigma$ such that “every player is playing their best response to the strategy choices of his opponents”. More formally, σ^* is a Nash equilibrium if:

$$(\forall i \in P) \quad \sigma^*_i \text{ is a best response to } \sigma^*_{-i}, \quad (1)$$

or, equivalently,

$$(\forall i \in P)(\forall s_i \in S_i) \quad u_i(\sigma^*_i, \sigma^*_{-i}) \geq u_i(s_i, \sigma^*_{-i}). \quad (2)$$

where $P = \{1, \ldots, n\} = \text{the player set}$,

$S_i = \text{Player } i \text{'s pure-strategy space}$,

$\sum_i = \text{Player } i \text{'s mixed-strategy space (the set of probability distributions over } S_i)$,

$-i = \text{The set } P \setminus \{i\}$,

$\sigma_i = \text{Player } i \text{'s mixed-strategy profile}$, and

$u_i(\sigma) = \text{Player } i \text{'s expected utility from a mixed-strategy profile } \sigma$.

To compute our game’s Nash equilibrium, we first formulate the Verifier’s and the Claimant’s mixed-strategy best-responses’ correspondences (respectively, $MBR_V(r, s)$ and $MBR_C(p, q)$):

$$MBR_V(r, s) = \begin{cases} \{(1, 0, 0)\} & r > \frac{3}{8}s \text{ and } r > \frac{1}{8}s, \\ \{(0, 1, 0)\} & r < \frac{3}{8}s \text{ and } r < \frac{4}{8}s, \\ \{(0, 0, 1)\} & r < \frac{1}{8}s \text{ and } r > \frac{1}{8}s, \\ \{(p, 1-p, 0)\} & r = \frac{s}{8}s, \\ \{(p, 0, 1-p)\} & r = \frac{s}{8}s, \\ \{(0, q, 1-q)\} & r = \frac{s}{8}s, \end{cases}$$

$$MBR_C(p, q) = \begin{cases} \{(1, 0, 0)\} & p > \frac{3}{8}q \text{ and } p > \frac{1}{8}q, \\ \{(0, 1, 0)\} & p < \frac{3}{8}q \text{ and } p < \frac{4}{8}q, \\ \{(0, 0, 1)\} & p < \frac{1}{8}q \text{ and } p > \frac{1}{8}q, \\ \{(r, 1-r, 0)\} & p = \frac{s}{8}q, \\ \{(r, 0, 1-r)\} & p = \frac{s}{8}q, \\ \{(0, s, 1-s)\} & p = \frac{s}{8}q. \end{cases}$$
where \(p, q, r \) and \(s \) are parameters.

The probabilities \(p, q, r \) and \(s \) corresponding to the players’ mixed-strategies, are computed using the linear programs described in equations (3) and (4):

\[
\begin{align*}
\text{Minimize} & \quad x_1 + x_2 + x_3 \\
\text{Subject to} & \quad 5x_1 - 3x_2 \geq 1, \\
& \quad -x_1 + 4x_2 \geq 1, \quad (3) \\
& \quad x_1 \geq 0, \quad x_2 \geq 0, \quad x_3 \geq 0.
\end{align*}
\]

\[
\begin{align*}
\text{Minimize} & \quad y_1 + y_2 + y_3 \\
\text{Subject to} & \quad 5y_1 - 3y_2 \geq 1, \\
& \quad -y_1 + 4y_2 \geq 1, \quad (4) \\
& \quad y_1 \geq 0, \quad y_2 \geq 0, \quad y_3 \geq 0,
\end{align*}
\]

where:

- \(p, q, u = 1 - p - q, r, s \) and \(t = 1 - r - s \) are respectively the probabilities of playing \(T_v, L_v, I_v, T_c, L_c \) and \(I_c \).
- \(W_1(p, q, u, T_c) \) is \(v \)'s win if \(c \) plays \(T_v \).
- \(W_1(p, q, u, L_v) \) is \(v \)'s win if \(c \) plays \(L_v \).
- \(W_1(p, q, u, I_v) \) is \(v \)'s win if \(c \) plays \(I_v \).
- \(W_2(r, s, t, T_v) \) is \(c \)'s win if \(v \) plays \(T_v \).
- \(W_2(r, s, t, L_v) \) is \(c \)'s win if \(v \) plays \(L_v \).
- \(W_2(r, s, t, I_v) \) is \(c \)'s win if \(v \) plays \(I_v \).
- \(Z_v = \text{Minimize} (W_1(p, q, T_c), W_1(p, q, L_c), W_1(p, q, I_c)), Z_v > 0 \).
- \(Z_C = \text{Minimize} (W_2(r, s, T_v), W_2(r, s, L_v), W_2(r, s, I_v)), Z_C > 0 \).

\[
\begin{align*}
x_1 &= \frac{1}{2v}, & x_2 &= \frac{2}{2v} & x_3 &= \frac{1}{2v}, \\
y_1 &= \frac{1}{2v}, & y_2 &= \frac{2}{2v} & y_3 &= \frac{1}{2v}.
\end{align*}
\]

Then, the Simplex algorithm is used to solve equations (3) and (4). This resolution leads to the following values: \(p = \frac{7}{13}, q = \frac{6}{13}, u = 0, r = \frac{7}{13}, s = \frac{6}{13} \) and \(t = 0 \).

6 Results

After optimal results are computed by the Simplex resolution, the algorithm matches Verifier and Claimant probabilities with the mutual best-response correspondence (\(MBR_V(r, s) \) and \(MBR_C(p, q) \)).

The Claimant probability \(r = \frac{7}{13} \) corresponds to the case where \(T_v \) is the best-strategy for the Verifier. In fact, \(r \) is greater than \(\frac{3}{8} \) and also greater than \(\frac{3}{8} \). Analogously, the Verifier probability \(p = \frac{7}{13} \) yields the case where \(T_c \) is the Claimant’s best-strategy. In fact, \(p \) is greater than \(\frac{3}{8} \) and also greater than \(\frac{1}{6} \). Thus, the mixed-strategy Nash equilibrium of our game corresponds to the situation where telling the truth and cooperating is the best-strategy for both players. Consequently, the best strategy for the Verifier is \(T_v \) and the best strategy for the Claimant is \(T_c \) and both players have no incentive to deviate from this situation. This means that according to our bidirectional authentication, the two Bluetooth devices in communication are better off trusting each other.

7 Our bidirectional Bluetooth authentication protocol

Our method includes two main phases: the authentication security parameters phase and the authentication game establishment phase. The first phase is used to define the devices’ trustworthiness and consequently the players’ strategies. The second phase corresponds to our game-theoretic model where the bidirectional authentication is considered a bimatrix game.

7.1 The security parameters check phase

According to the classic Bluetooth authentication (see figure 1), the Verifier and the Claimant devices use their input parameters to produce the SRES and ACO outputs. For both devices, there is only one secure parameter, the \(BDDR_{C} \) relative to the Claimant, and only the Verifier checks if the two \(SRES \) correspond.

The Verifier can establish the trustworthiness or the untrustworthiness of its correspondent. Consequently, it can accept or refuse the communication without any risk. But, if the Verifier is a malicious device, the Claimant is incapable of discovering this, and the Verifier can easily damage its correspondent.

Consequently, in our bidirectional model, we consider additional input parameters for both existing players: \(RAND(C) \) and \(BDDR_{V} \). Thus, the security parameters check phase include two main steps. First, the Verifier checks the Claimant identity. Next, the Claimant takes the role of the Verifier and checks its correspondent identity. Note that this identity check is done during two different sessions and is not bidirectional. In each step, each
device computes an output and then, the two devices check for correspondence. The Verifier and the Claimant compute, respectively, SR_1 and SR_2 in the first step, and SR_3 and SR_4 in the second step.

7.2 The authentication game phase

The authentication game phase consists of modeling the bidirectional Bluetooth authentication as a game between the Verifier and the Claimant. Results achieved in the previous step of our algorithm are used to define the players strategy. In fact, device-retained strategies are derived from output matching. On one hand, $SR_1 = SR_2$ means that the Claimant is trusted and ready to communicate. Otherwise, the Claimant is considered a malicious device. On the other hand, if the Claimant does not return a result, it is indifferent to the communication. The same reasoning is used for the Verifier where, this time, the SR_3 and SR_4 results are used.

After deriving the players’ strategies, the utility function parameters are defined. These parameters represent the cost and reward function coefficients affected to each player, depending on its strategy and the one that of its correspondent. Next, the Nash equilibrium is computed as detailed in section 5.3 (or best-responses correspondence). Consequently, our Nash equilibrium represents a pair of strategies (one by device) where each player tells the truth and wants to securely communicate which its correspondent. Recall that in a Nash equilibrium, no player has an incentive to deviate from its strategy. In terms of Bluetooth security, our bidirectional authentication is successful if and only if both devices are trusted and there isn’t any risk of damage or impersonation.

7.3 BiAuth algorithm

We summarize our bidirectional authentication procedure on an algorithm called BiAuth which is described as follows:

Algorithm BiAuth

1. Security parameters check:
 1. Define the authentication security parameters.
 2. Compute the security parameters correspondences.

2. Authentication game:

 (a) Define the game basic elements:
 - Define the set of players (a Verifier device and a Claimant device).
 - Define the players’ pure strategies (depending on the verification of security parameters).
 - Define the players’ mixed strategies.
 - Define the players’ utility functions.
 (b) Find mixed Nash equilibrium:
 - Compute Verifier and Claimant pure-strategy best-response correspondences.
 - Compute Verifier and Claimant mixed-strategy best-response correspondences.
 (c) Formulate Verifier and Claimant problems as linear programs.
 (d) Compute mixed strategies’ probabilities: Simplex resolution.
 (e) Compute mixed Nash equilibrium.

Figure 2 illustrates our bidirectional Bluetooth authentication protocol, where:

- RV and RC are Verifier and Claimant random-generated numbers.
- BV and BC are the Verifier and the Claimant Bluetooth addresses ($BDDR$).
- LK is the link key.
- ACO is the Authenticated Ciphering Offset generated by the authentication process.
- FV and FC are the Verifier and the Claimant functions used to check their identities.
- $E1$ is the cryptographic function used during the unidirectional Bluetooth authentication.
- SSV and SSC are the set of all possible strategies for the Verifier and the Claimant.
- PRV and PRC are Verifier and Claimant strategy probabilities.
- UV and UC are the Verifier and the Claimant utility functions.
- CNE_V and CNE_C are the functions used to compute the Verifier and the Claimant best-response correspondences.
- NEV and NEC are the Verifier and the Claimant Nash strategies.
7.4 Attacks scenarios

As previously cited, an important risk incurred in the classical Bluetooth authentication is linked to a malicious Verifier. Such a device can attack a trusted Claimant by a set of messages and damage it. According to our authentication model, such a scenario will not occur. In fact, when considering our game, the strategies pairs- lying to trying to damage the Claimant and telling the truth to communicate with the Verifier- do not represent a Nash equilibrium. Another possible attack is the Man-in-the-Middle attack where an attacker device inserts itself “in between” two Bluetooth devices. The attacker connects to both devices and plays a masquerade role. Our bidirectional authentication can prevent such an attack. Indeed, the attacker could not impersonate any device in communication. The attacker must authenticate itself as a trusted device for each Bluetooth device. Otherwise, the authentication fails.

8 Conclusion and perspectives

In this work, we present a solution to strengthen the Bluetooth security. A classical Bluetooth authentication is unidirectional and consequently is vulnerable to malicious device attacks. The idea is to propose a bidirectional authentication scheme. Game theory is useful for such modelisation since it is a global framework with formal opportunities for real-life problem representations. Thus, the authentication between two Bluetooth devices is viewed as a game. The new bidirectional authentication is modeled as a simultaneous two-players game (bimatrix). The possible strategies for each player are defined (based on some security parameters check) and formulated with the utility function. Such function affects some costs and rewards values for each player depending on its strategy and its correspondent’s. Then, each players’ best-strategy are computed (defining the Nash equilibrium). The algorithm uses the Simplex technic to calculate players’ total gains. Recall that in such conditions only one Nash equilibrium can be derived. This equilibrium corresponds to the case where both players are telling the truth. In Bluetooth security terms, two devices have to be trusted during bidirectional authentication. In other words, the bidirectional authentication is successful if and only if both devices are authentic.

To implement this protocol, two issues are possible: outside the Bluetooth core protocol (in the application layer) or within the Bluetooth core protocol (in the LMP layer). In the first case, the classical Bluetooth authentication will be replaced by our bidirectional authentication. When considering the second view, some changes in the cryptographic function used during a classical Bluetooth authentication are necessary in order to incorporate the described model. We are finalizing some benchmarks to compare the efficiency between our algorithm and the standard Bluetooth authentication model.

Our work can be extended in different ways. For example, we can model our bidirectional authentication as an N-player game. According to such model, an authentication process can be performed between many devices at the same time. This will be useful when piconeets or scatternets are formed. In addition, we can exploit extensive form in order to describe dynamic behavior. A player will take into account the effect of its current behavior on the other players’ future behavior. This principle can forewarn trusted Bluetooth devices of possible threats and malicious devices. Also our model can be applied to any authentication process just by adapting the utility function parameters.

References

